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Abstract 

In digital halftoning, moiré refers to the periodic 
interference pattern created by superimposing the cyan, 
magenta, yellow, and black halftone patterns of periodic 
amplitude modulated screens. This paper introduces the 
concept of stochastic moiréthe aperiodic interference 
pattern created by superimposing the aperiodic halftone 
patterns of frequency modulated screens. Given two 
overlapping stochastic halftone patterns, this paper details 
how to extract a continuous-space surface that completely 
characterizes the spatial fluctuations in color/texture of 
stochastic moiré that exist in the halftone. To quantitatively 
measure the visibility of stochastic moiré, this paper 
introduces a statistic for characterizing the fluctuations in 
color/texture that result from stochastic moiré and shows 
how this metric can be used to identify the better of two 
arrangements of dots at minimizing the visual distortion 
stochastic moiré creates. 

Introduction 

Amplitude modulated (AM) halftoning refers to algorithms 
that create the illusion of continuous-tone in bi-level 
imaging devices by producing a regular pattern of round 
dots that vary in size according to tone such that dark 
shades of gray are represented by large printed dots and 
light shades of gray are represented by small dots. In color 
printers, continuous shades of color are produced by 
superimposing the halftone patterns of cyan, magenta, 
yellow, and black inks. While aligning each AM grid such 
that the round dots of each color are superimposed directly 
on top of one another (a process referred to as dot-on-dot) 
produces a full spectrum of colors,1 even slight mis-
registration (mis-alignment of the grids) can drastically 
degrade the visual quality of the printed image. Instead of 
overlapping dots, each AM screen is typically given its own 
orientation or screen angle. The problem now is not the 
distortion created by mis-registration, but rather that caused 
by the introduction of a visual interference pattern created 
by superimposing two or more regular patterns, a 
phenomenon known as moiré. 

Periodic moiré created by the superposition of AM 
patterns has been studied in great detail by Amidror et al2 
who model AM screens as cosinusoidal gratings and their 

superposition in the spatial domain as convolution in the 
spectral domain, Fig. 1. Modeling binary dither patterns as 
continuous-tone cosinusoidal gratings leads to a Fourier 
domain representation that is composed exclusively of three 
purely real impulses. Because the superposition of black 
with any other color leads to black, Amidror et al adopt a 
multiplicative model where the pattern created by 
superposition is determined by a pixel-wise multiplication 
operation between the two patterns being superimposed. In 
the Fourier domain, this multiplicative relationship leads to 
a convolution of the impulses of each grating. 
Approximating the human visual system (HVS) in the 
Fourier domain as a circular rect-function, the optimal 
screen offset angle is the angle that keeps all but the DC 
impulse outside the cut-off frequency of the HVS, Fig. 2. 
 

 

Figure 1. The periodic moiré approximated by the superposition of 
two cosinusoidal gratings such that the resulting interference pattern 
is modeled as the convolution of impulses in the Fourier domain. 
 

 

Figure 2. The periodic moiré approximated by the superposition of 
two cosinusoidal gratings and a circular step function modeling 
the HVS where (left) has visible moiré artifacts while (right) has a 
screen offset angle that virtually eliminates moiré from the 
halftone. 
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In frequency modulated (FM) halftoning, the illusion of 
continuous-tone is produced by a random arrangement of 
same sized dots where the average distance between two 
dots varies with tone such that dark shades of gray are 
represented by a tight packing of dots and light shades of 
gray are represented by a loose packing. The optimal FM 
patterns are the ones that spread the printed dots as 
homogeneously as possiblecreating a dither pattern 
composed exclusively of high frequency blue-noise.3 In 
theory, superimposing two or more stochastic dither 
patterns does not lead to the appearance of moiré, but 
superimposing two FM screens does lead to a halftone with 
low frequency artifactscreating a noisy (uncorrelated) 
appearance. 

Amidror et al's spectral analysis is not valid for 
analyzing stochastic halftones due to its reliance on the 
simple characterization of cosinusoidal gratings in the 
spectral domain. The spectral representation of stochastic 
halftones are very complicated, containing a full spectrum 
of real and imaginary components. Only through the 
computational convenience of digital computers can the 
spectrums of stochastic halftones be managed. 

In this paper, we study the phenomenon of low-
frequency graininess created by superimposing stochastic 
dither patterns, referring to the phenomenon as stochastic 
moiré. Like moiré in AM halftoning, stochastic moiré 
cannot be eliminated but only minimized. In this paper, we 
show that stochastic moiré is defined by a relationship 
between in- and out-of-phase interactions between two or 
more dither patterns, and the optimal halftoning algorithms 
are the ones that space the in- and out-of-phase points either 
as close together or as far apart as possible. 

Spatial Analysis of Moiré 

The basic premise of Amidror et al's work on periodic 
moiré is that the superposition of the two AM screens is a 
multiplicative relationship in the luminance image. In the 
Fourier domain, this multiplicative relationship leads to a 
convolution of the Fourier spectrums. Amidror et al go 
further to simplify the problem by replacing binary screens 
with cosinusoidal gratings, a surface whose Fourier 
spectrum is characterized by a handful of impulses orderly 
arranged on the frequency plane. This model has effectively 
simplified periodic moiré to a framework that can be 
implemented by hand, not computation. The optimal 
alignment of screens is now a simple problem of moving 
impulses as far away as possible from the origin of the 
spectral plane. 

Periodic Moiré 
Noting Ref. 1, moiré is a periodic pattern of over-

lapping and non-overlapping dots. Making Amidror et al's 
substitution of cosinusoidal gratings in place of binary 
screens, our basic premise for characterizing moiré (both 
periodic and stochastic) is that moiré is a pattern of in-phase 
and out-phase alignments between two gratings. Noting Fig. 
3, the locations where the two gratings are in-phase are the 

points where the two peaks (solid lines) intersect or where 
two valleys (dashed lines) intersect. Out-of-phase points are 
the locations where a peak of one pattern intersects a valley 
of the other. 

 

 
Figure 3. The periodic moiré created by superimposing two 
cosinusoidal gratings where the peaks and valleys of each grating 
is indicated as a solid or dashed line respectively. 

 
Shown in Fig. 4 are the in-phase (Xs) and out-of-phase 

(Os) points between two cosinusoidal grating. The 
parameter r represents what we refer to as the principle 
wavelength of moiré and it is the average distance from an 
in-phase point to its nearest out-of-phase point. For this pair 
of periodic gratings, the distance r has a deterministic 
solution: 

r = cos(θ),  (1) 

where θ represents the relative screen angle between the two 
screens. From our understanding of the human visual 
system, minimizing the visibility of moiré becomes a 
problem of either maximizing r (θ = 0°) or minimizing r (θ 
= 90°) such that the moiré pattern fluctuates too slowly per 
unit length to be noticed by the HVS or too rapidly. Using 
two-dimensional gratings, Fig. 5 shows the locations of the 
in and out-of-phase points. Here minimizing r means setting 
θ = 45°. 

 
Figure 4. Diagram showing the location of in-phase (Xs) and out-
of-phase (Os) components where the minimum distance between 
Xs and Os is r. 

 
Figure 5. The in-phase and out-of-phase points for periodic moiré 
created by superimposing (left) two 2D cosinusoidal gratings and 
(right) two binary AM halftone patterns. 
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Now considering the periodic AM patterns for a given 
color composed of a given proportion of A and B, if all the 
dots of A are in-phase with the dots of B, the halftone 
creates a certain color and texture for the viewer. If dots of 
A are all out-of-phase with B, the halftone creates a 
different color and/or texture for the viewer. If we choose θ 
such that r is minimized (θ = 45°), the screens of A and B 
create the moiré that minimizes the visibility of artificial 
textures created by superimposing A and B. Given the low-
pass nature of the human visual system (HVS),4 minimizing 
r creates a pattern that maximizes the frequency of spatial 
fluctuations in color/texture. Maximizing these fluctuations 
moves the spectral content of the halftone pattern to where 
the HVS is least sensitive, creating an apparent image 
composed exclusively of a DC color/texture. 
 

 

Figure 6. Three two-color halftone patterns illustrating (A) 
perfectly overlapping or in-phase pixels, (B) uncorrelated pixels, 
and (C) perfectly non-overlapping or out-of-phase pixels. 

 

Aperiodic Moiré 
Now while this framework of in-phase and out-of-

phase points offers no advantage over Amidror et al's with 
regard to periodic moiré, it can be extended to stochastic 
halftoning. Before doing so, we need a concise definition of 
what stochastic moiré is and what it is not. We start with 
Fig. 7 where several stochastic halftone patterns are shown 
each composed of 6.25% (1/16) cyan coverage and 6.25% 
magenta coverage. Pattern A shows the instance where 
minority pixels of cyan and magenta are homogeneously 
distributed such that magenta pixels are placed midway 
between cyan pixels. Shown in pattern C is the case where 
magenta pixels are placed directly on top of all cyan pixels. 
While it maybe argued by a given observer that pattern A 
creates a hue different from that of pattern C, we ignore 

those differences focusing on the fact that pattern A 
certainly portrays a different texture from that of C. Any 
differences in hue are assumed to be corrected by 
manipulating the percentage of coverage of the various inks. 

Now while A and C have different textures, we make 
no claims as to whether A or C is a better texture. The real 
study of stochastic moiré occurs in pattern B. Here the 
magenta and cyan dither patterns are completely 
uncorrelated with some minority pixels (of both patterns) 
overlapping and some falling directly in between those of 
the other pattern. All other minority pixels fall some where 
in between these two extremes. From pattern B, we define 
stochastic moiré as the change in texture that occurs from 
one point to another within a given halftone. Like periodic 
moiré, the optimal stochastic halftone is the one that either 
minimizes or maximizes the amount of fluctuation in this 
texture per unit area. In the case of pattern A and C, the 
amount of fluctuation is minimized with patterns A and C 
offering equivalent optimality regarding moiré. 

Restricting our analysis to the spatial domain, one way 
to characterize fluctuations in texture is to identify the in-
phase and out-of-phase points. In-phase points are the 
locations where minority pixels of both patterns overlap, 
while out-of-phase points are the locations where a minority 
pixel of one pattern falls directly between minority pixels of 
the other. A minority pixel is directly between minority 
pixels of the other pattern when it coincides with a vertex 
point of the voronoi mesh defined by the minority pixels of 
the other pattern, Fig. 6. We choose these vertices as the 
location of valleys because they are mid-way between 
minority pixels, with any displacement moving the valley 
closer to one minority pixel and farther from the others. The 
principle wavelength of stochastic moiré will again be the 
average distance between an in-phase point and its nearest 
out-of-phase point. 

The problem with such a metric, as just described, is 
that it relies solely on the extreme phase points for which 
there may be very few. The minority pixels that fall 
between extremes tell us something about how well aligned 
the two dither patterns are, and we need to make use of this 
information. If we return to our definition of moiré as being 
a pattern of overlapping and non-overlapping dots, in-phase 
minority pixels are instances of overlapping pixels while 
out-of-phase pixels are clearly non-overlapping. We can 
even say that these out-of-phase pixels are as non-
overlapping as minority pixels can possibly be for a given 
halftone. Minority pixels that are neither of these extremes 
are non-overlapping, but we will say that they are not as 
non-overlapping as out-of-phase pixels. How non-
overlapping a minority pixel is can be measured as the 
distance from that minority pixel to its nearest neighboring 
minority pixel in the other pattern. 

In formal terms, the dither patterns φA = {ai : i = 1,2,…} 
and φB = {bj : j = 1,2,…} define a discrete-space, 2-D 
function D[n] such that: 

∑
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In its eqn. (2) form, D[n] represents a continuous-space 
signal D(x), an image we will refer to as the stochastic 
moiré surface, that has been sampled on a stochastic 
sampling grid defined by φA. If the sampling grid has a 
Poisson distribution, as would be the case of a blue-noise 
dither pattern with principle wavelength λa, we can obtain 
D(x) from D[n] using an ideal low-pass filter with cutoff 
frequency 0.5 λa

-1. 
 

 

Figure 7. Diagram showing the location of out-of-phase (circles) 
pixels corresponding to a stochastic dither pattern with minority 
pixels marked as black squares. 

 
Given our stochastic moiré surface, characterizing 

stochastic moiré is now reduced to the problem of charac-
terizing the spatial fluctuations in the continuous-space, 2-D 
surface D(x). How we measure spatial fluctuations in this 
new monochrome image is arbitrary, but it is important to 
take into account our understanding of the human visual 
system to put a higher cost on mid-frequency fluctuations as 
opposed to very low or very high. Perhaps the easiest way 
to measure the visibility of stochastic moiré is to measure 
the visual cost5 of the stochastic moiré surface as: 

))()((PowerAverage),( uHVSuVC f
BA ×= Dφφ       (4) 

where D
f(u) if the Fourier transform of D(x) and HVS(u) is 

the spectral, low-pass filter model of the human visual 
system. 

For an illustration of eqn. (4) as our new stochastic 
moiré metric, Fig. 8 (top) shows a halftone pattern 
representing the cyan-magenta color (0.11,0.11) along with 
its stochastic moiré surface. This particular surface has a 
visual cost of 0.0854, assuming a 300 dpi printer and a 
viewing distance of 10 inches. The pattern shown in Fig. 8 
(bottom) has, on the other hand, a visual cost of 0.0432. 
Comparison of the two visual costs suggests an 
improvement in color rendition from the (top) pattern of 
Fig. 8 to the bottom. Visual inspection certainly concurs. 

Before introducing case studies of the stochastic moiré 
surface, its important to understand why φA must be a blue-
noise process, and the reason lies in stochastic sampling 
theory whereby a Poisson point process is composed 
exclusively of a DC frequency component combined with 
spatial frequencies above 1/λa, where λa is the minimum 
distance between minority pixels in φA. Perfect 
reconstruction of the continuous-space signal is guaranteed 
if the signal being sampled only contains spatial frequencies 
at or below 0.5/λa, Fig. X. 

Based on our definition of D[n], the stochastic moiré 
surface is such that the maximum rate at which the surface 
can change is to go from a maximum value or peak at one 
sample to a minimum value at a nearest neighboring 
sample. Half the wavelength of this maximum rate 
component is, therefore, equal to λa just as the distance from 
a peak to valley in a cosine is equal to half the cosine's 
wavelength. The frequency of this maximum rate 
component is, therefore, equal to 0.5 λa

-1. We conclude that 
since the maximum spatial frequency contained within the 
stochastic moiré surface is 0.5 λa

-1 with the sampling rate 
being sufficiently high as to avoid aliasing. If, for instance, 
the reference pattern defining the sampling grid were from a 
white-noise pattern, then the stochastic moiré surface would 
be impossible to extract from the spectral components of the 
sampling grid. 

Now suppose that both dither patterns are blue-noise 
patterns but with different minority pixel intensities. In such 
an instance, the sampling grid is defined by the pattern with 
a higher intensity. This follows from our earlier comment 
that about how fast the surface can change from a peak to a 
valley. Observing Fig. X, while it is not possible for the 
surface to move from a peak to a valley between any two 
neighboring minority pixels in φB, it is possible to go from a 
peak to a valley in less distance than between any two 
neighboring samples in φA. We note that this is an important 
observation since the lower intensity dither pattern will have 
a lower cutoff frequency. The casual observer may think the 
lower cutoff frequency would make for a more conservative 
estimate on the moiré surface. 
 

 

Figure 8. Two dither patterns and their corresponding stochastic 
moiré surfaces.  

Case Studies 

As a demonstration of eqn. (4)'s feasibility at quantitatively 
measuring stochastic moiré, this section compares the 
resulting visibility measures for 2-color halftoning using 
Floyd's and Steinberg's,6 Jarvis et al's,7 and Ulichney's3 
error-diffusion. It is well documented that Floyd's and 
Steinberg's error-diffusion creates strong periodic textures at 
gray levels 1/4, 1/3, and 1/2 while Jarvis et al's does so at 
gray level 1/3. In our 2-color halftones, these periodic 
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textures lead to large patches of fixed phase between pattern 
A and Bleading to large near-DC components in the 
stochastic moiré surface and, therefore, large visibility 
measures. 

Shown in Fig. 9 (top) and (middle) are the 1-D plots of 
visual cost for varying minority pixel intensities in A equal 
to B∈(0,1/2] with large spikes corresponding to strong 
periodic textures. Through a perturbation of error filter 
coefficients, Ulichney's error-diffusion breaks up periodic 
textures in the dither patterncreating a far more pleasant 
blue-noise halftone. In our 2-color prints, this perturbation 
eliminates strong spikes (bottom) and creates the optimal 2-
color halftoning scheme among the three being compared 
here. 

 

 

Figure 9. Plots of the visual cost versus minority pixel intensity 
level for (top) Floyd's and Steinberg's, (middle) Jarvis et al's, and 
(bottom) Ulichney's error-diffusion. 

Conclusions 

Stochastic moiré is the visible interference pattern created 
by superimposing two aperiodic dither patterns. Using 
stochastic sampling theory, we showed how to extract a 
continuous-space stochastic moiré surface from two 
overlapping dither patterns. This surface represents a 
powerful and especially elegant tool for optimizing color 
halftoning algorithms. A very simple demonstration of the 
stochastic moiré surface was presented when we showed 
that, in general, Ulichney's perturbed error diffusion 
algorithm produced better two color prints than Floyd's and 
Steinberg's or Jarvis et al's error diffusion. 

With regards to optimality, there are two approaches to 
minimizing the visible artifacts associated with stochastic 
moiré. The first is to minimize spatial fluctuations per unit 
area such that the corresponding texture changes too slowly 
to be noticed by the human visual system. This approach is 
equivalent to dot-on-dot or dot-off-dot approaches to AM 
halftoning, and it, therefore, carries the same constraints on 

screen registration. The second approach to minimizing the 
visibility of artifacts is to maximize spatial fluctuations per 
unit area such that the texture changes too rapidly to be 
noticed by the viewer. 

In a closing note, it's important to understand that this 
paper's only goal is to introduce stochastic moiré and a 
framework for characterizing it. This paper does not 
represent a technique for optimizing the halftones of two 
color prints, while such techniques may be obvious. We 
leave it to future works and to other authors to describe any 
such details. Ultimately, this paper alleviates the need for 
hunt-and-peck optimization of halftoning algorithms. 
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